[登录] [免费注册]
试剂仪器网
位置:首页 > 资讯 > 产品技术
2535
无铅钙钛矿材料将在光催化领域大展身手
众所周知,太阳能是清洁无污染且可以广泛使用的能源之一。但是,当没有太阳光时,人们需要把这些能量储存在电池中或者说通过光催化过程将太阳能转化为其它能源,例如通过光催化将太阳能转化成电能。太阳能清洁且丰富,但是当太阳不发光的时候,需要将电能储存在电池内,这个过程被称为光催化。在光催化水分解过程中,阳光将水分解成氢和氧,然后在燃料电池中重新组合,释放能量。日前
美国研究人员发现:钠和钾电池有望取代锂电池,使电池成本显著降低
几乎没有任何元素像锂元素一样更适合生产电池。锂离子电池不仅充电速度快,寿命长,功率大,而且重量更轻。因此,电动汽车制造商们正在研究如何能够大量开采锂元素及开采位置。研究人员们在德国萨克森州地下搜寻锂元素,但问题是锂元素是非常少。因此,研究人员们长期以来一直在寻找锂元素的替代性材料,这里将讨论两种特别有前景的材料。美国在亚特兰大佐治亚理工学院的Matthew
锂电池
2018.06.23
苏州纳米所在石墨烯气凝胶智能纤维领域取得重要进展
智能纤维,通常指可感知环境变化或刺激(如光、电、温度、湿度、pH、机械等)并能够做出反应的纤维,是智能可穿戴织物中重要的基本组成单元。智能纤维可通过智能织物形式,整合到臂带、袖套、服装、头盔、腰带等部位之中,并作为可穿戴传感器、制动器、能源器件、调温织物及加热器等功能器件的核心单元应用于柔性可穿戴智能系统中。然而,目前大多数织物纤维以天然高分子或合成高分
用石墨烯做“三明治”?科学家为突破储碳极限出奇招
为加强欧盟未来新兴技术领域的研发创新,欧盟在2013年开展了为期十年的“石墨烯旗舰计划”,这也是迄今为止欧盟最大的研发资助项目。功夫不负有心人,随着该计划逐渐推进,各个研究方向也成果喜人。近期,参与这项计划的来自博洛尼亚大学的科学家们公开发声,称他们通过结构设计研发出一种新的气体分离膜,对气体的选择和渗透性已经突破了传统极限值,这项研究可能会在捕捉碳、储
莱斯大学最新技术制造出导电三维石墨烯,将为柔性电子器件带来新可能
莱斯大学的科学家们采用激光诱导石墨烯分层,并建立了一个原型,得到三维石墨烯塑造成的复杂形状。这种泡沫为储能和灵活柔软的电子传感器应用提供了新的可能性。来源:莱斯大学Tour Group莱斯大学的科学家们已经开发出一种简单的方法来产生导电的三维材料,这种材料就是石墨烯泡沫。石墨烯泡沫粘糊糊的固体的外观感觉像一个孩子的玩具,但它为能量存储和灵活的电子传感器应用提
石墨烯
2018.06.19
仿鲨鱼皮肤设计:一种添有TiO2纳米颗粒的高抑菌性涂料
在电视特辑或新闻报道中,人们常关注于鲨鱼对人类的攻击。但科学家们发现:鲨鱼能够形成一种新型表面来攻击细菌。这对于人类抵抗细菌攻击具有一定的帮助。据ACS Applied Materials&Interfaces报道:研究人员设计出一种涂有抗菌剂的涂层,并具有鲨鱼皮肤的菱形纹理。 根据美国疾病控制和预防中心的数据可知:抗击细菌是一场持续不断的战斗,每年在
卡尔斯塔德大学:淀粉混合物可替代食品塑料包装
所有以石油为原料的食品包装材料总归是要被生物材料替代的。Karlstad大学的研究表明,淀粉和其他聚合物的混合物形成了同样有效的保护屏障。 “食品包装必须保护和延长食品的保质期,并应在运输过程中起到保护作用。”Karlstad大学化学工程博士Asif Javed说:“为了满足这些要求,在纸质包装中需要保护性屏障,例如用于果汁或乳制品的包装。” 水和氧
Nature:韩国解决石墨烯OLED商用化的最大难题!
近日消息,韩国首尔大学研究所研发出化学性能稳定的氟化高分子石墨烯材料。此种石墨烯不止导电性极佳,在300度以上的高温下也可以形成稳定性极佳的电极。研究院还表示此次的发现相当于解决了石墨烯OLED商用化的最大难题,可有助于提前石墨烯电极的商用化。韩国首尔大学材料工学院研发出提升最薄导电体-石墨烯性能与稳定性的新型加工方法。此种技术可应用于太阳能电池,柔性电池,
石墨烯OLED
2018.06.14
《自然-材料》:瑞士硅-钙钛矿太阳能电池效率达25.2% 创新纪录
据外媒NewAtlas报道,硅一直是太阳能电池技术的首选材料,因为其具有价格低廉、稳定且高效等特别。不幸的是,硅太阳能电池的转换效率正快速接近其理论极限,但将其与其他材料配对可能有助于突破该上限。现在,瑞士洛桑联邦理工大学(EPFL)和瑞士电子与微技术中心(CSEM)的研究人员已经开发出一种新的硅和钙钛矿太阳能电池组合技术,并报告了25.2%的效率纪录-这是
掺杂锑的阳极材料可以做到充电一小时,储能多三倍
锂离子电池主要应用于移动电话,平板电脑和电动汽车,并且它的存储容量和功率密度远远优于其它的可充电电池。但这样仍存在缺陷,智能手机电池只能带电一天,电动汽车需要充电好几个小时。 因此,科学家们正在努力改善锂电池的功率密度和充电速率。 能源与气候研究所(IEK-1)的Dina Fattakhova-Rohlfing解释道:“影响锂离子电池性能的一个重要的因素是
诺奖得主领军石墨烯磁性材料研发,为大数据存储时代提供利器
近日美国能源部下属的劳伦斯伯克利国家实验室和法国诺贝尔物理学奖获得者Albert Fert合作完成了一个科研项目。他们将单层的石墨烯和薄层磁性材料(钴和镍)结合在一起,改变了材料电子结构,产生独特的自旋性能,使它能在非常小的体积下快速高效地存储传输数据。这为下一代计算发展奠定了高速储存技术基础。伯克利实验室的研究人员,Andreas Schmid(左)和Go
“全太阳光谱增强的三维石墨烯强化黑色二氧化钛光催化氧化净水技术”在沪皖成功示范
中国科学院上海硅酸盐研究所首席研究员黄富强带领科研团队历经7年攻关,成功研发出治污新材料,该材料由三维石墨烯管和黑色二氧化钛两种特殊材料混合而成,太阳光照射2周内,可较明显改善水质,帮助污水变清。部分成果今年初获得“国家自然科学奖”二等奖,现已在上海、安徽等地成功示范。该技术的治污原理是“物理吸附+光化学催化降解”。三维石墨烯管作为关键的光生载流子分离和传导
塞维利亚大学一种新型水体有机吸附物材料即将问世
Esteban Alonso的研究团队。图片来源/塞维利亚大学 水体污染已经日趋成为一个严重的环境问题,它引起了科学界对研究新的污染防治方案的兴趣。沿着这些思路,塞维利亚大学的一个科学研究团队最近展示了两种新型水体吸附材料,这种材料能够在24小时内高效的消除水中有机污染物。 目前,他们已经对这两种类型的层状硅酸盐水体吸附材料进行了科学评估。层状硅酸盐是硅
Nature子刊:给石墨烯开扇“窗”,使空气分离更高效节能
与你家的窗户不同,日本信州大学和法国巴黎文理学院的科学家们在石墨烯里也发现了一种“窗户”。这种窗户被称为“纳米窗”,是由独特的石墨烯纳米孔结构构成,通过“开关”孔两侧的原子,我们可以选择性地控制让某类空气分子通过。这对目前只能借助蒸馏进行空气分离的工业界来说,简直是一大喜讯。石墨烯动态纳米窗不但能消除蒸馏耗能高的问题,而且还使分离工艺更安全高效,这将是未
高容量高镍正极材料和动力电池单体开发取得突破
动力电池技术是制约新能源汽车产业发展的关键因素之一。动力电池能量密度和循环寿命提升是新能源汽车发展的迫切需求。在国家重点研发计划“新能源汽车”重点专项支持下天津力神电池股份有限公司项目团队设计开发了一种高比能量动力锂离子电池,预期将电动车行驶里程提高一倍,有效缓解里程焦虑,促进新能源车普及推广。 高性能正、负极材料是实现能量密度目标的关键基础。高性能氧
新材料问世!用于UV固化的3D打印且极具弹性的新型水凝胶
水凝胶因具有亲水的聚合链网络,可保留大量的水分,因此在各个领域得到了广泛的应用。而最新报道显示极具弹性的水凝胶已经将其应用扩展到透明触摸板、软机器人技术和其他需要大变形的领域。 对于高弹性的UV固化3D打印水凝胶来说,其可拉伸强度达1300%并且与基于高分辨率数字光处理的3D打印技术相兼容,从而能够制造具有复杂几何形状的水凝胶结构,并广泛应用于生物医学和柔
一种通用气泡模板衍生法制备石墨烯多孔材料
石墨烯多孔材料可兼具石墨烯优良的本征性质和多孔材料特殊的结构特性,具有密度低、孔隙率高、比表面积大、亲油疏水、电导率高等性能,在吸附、阻尼减震、隔音阻热、超级电容和应变传感等领域具有潜在应用。通过溶液自组装方法制备的多孔材料通常由杂乱排列的石墨烯层片组成,与层片规则排列的结构相比,限制了结构的有效控制和性能调控。模板衍生法可诱导层片的规则组装,然而,硬模
石墨烯
2018.06.04
美国博士生奇思妙想,用光学显微镜成功检测石墨烯厚度引爆科学界
一个来自美国威廉玛丽学院的博士毕业生在检测石墨烯时灵感大发,用最常见的光学显微镜设备和图片处理软件创新出一种巧妙的检测技术,得到导师的高度评价,正在广泛推广。他们的技术相比现有石墨烯检测技术,设备简单,成本降低到十分之一,检测速度也快上十倍,它的出现使消费品级石墨烯产品大规模生产向前迈进一大步。这项工作由博士毕业生Will Dickinson和他的导师Han
准确理解电子加热过程:解决了光敏石墨烯难题
光检测和控制是许多现代设备应用的核心,如智能手机的相机,他们使用的传感器完全依赖于CMOS(数码摄影中的图像传感器)。使用石墨烯作为光探测器的光敏感材料,可以对目前使用的材料提供显著的改进。石墨烯传感器是由石墨烯制作而成的用途广泛的高光敏度传感器。这种新型传感器的关键在于使用了“滞留光线”的纳米结构。纳米结构能够比传统的传感器更长时间的捕获产生光线的电子微粒
新南威尔士大学:新型超级干燥剂被开发出来,干燥性能优越
氧化石墨烯的吸水性表征如下所示:(a)GO、硅胶、石墨和还原氧化石墨烯在25℃下的等温吸收曲线(b)上图为80℃干燥后GO片,下图为P P0−1 = 0.6下的饱和GO片(c)不同条件下GO片的XRD图(d)MD模拟不同压力下水分子在GO片中的分布,z=0代表两层GO片的中心,d′为水分子在两层GO片中的位置(e)水分子和GO官能团平行于GO平面

127页,当前第43