您好,欢迎来到试剂仪器网! [登录] [免费注册]
试剂仪器网
位置:首页 > 产品库 > L-Phenylalanine-d8
立即咨询
咨询类型:
     
*姓名:
*电话:
*单位:
Email:
*留言内容:
请详细说明您的需求。
*验证码:
 
L-Phenylalanine-d8
本产品不向个人销售,仅用作科学研究,不用于任何人体实验及非科研性质的动物实验。
L-Phenylalanine-d8图片
CAS NO:17942-32-4
包装与价格:
包装价格(元)
1mg电议
5mg电议
10mg电议

产品介绍
L-Phenylalanine-d8 ((S)-2-Amino-3-phenylpropionic acid-d8) 是 L-Phenylalanine 的氘代物。L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) 是分离自大肠杆菌的必需氨基酸。L-Phenylalanine 是一种电压依赖性 α2δ 亚基 Ca2+ 通道拮抗剂,Ki 为 980 nM。L-Phenylalanine 是 NMDARs (KB 573 μM) 和非 NMDARs 的甘氨酸和谷氨酸结合位点的竞争性拮抗剂。L-Phenylalanine 广泛用于食品香料和药品的生产中。
Cas No.17942-32-4
别名氘代L-苯丙氨酸,(S)-2-Amino-3-phenylpropionic acid-d8
分子式C9H3D8NO2
分子量173.24
储存条件Store at -20°C
General tipsFor obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.
Shipping ConditionEvaluation sample solution : ship with blue ice
All other available size: ship with RT , or blue ice upon request
产品描述

L-Phenylalanine-d8 ((S)-2-Amino-3-phenylpropionic acid-d8) is the deuterium labeled L-Phenylalanine. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].

Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs[1].

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216. [2]. Wu WB, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018 May;65(3):476-483.
[3]. Wu WB, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018 May;65(3):476-483.
[4]. Wu WB, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018 May;65(3):476-483.
[5]. Wu WB, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018 May;65(3):476-483.
[6]. Wu WB, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018 May;65(3):476-483.
[7]. Wu WB, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018 May;65(3):476-483.
[8]. Wu WB, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018 May;65(3):476-483.
[9]. Wu WB, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018 May;65(3):476-483.
[10]. Mortell KH, et al. Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1138-41.
[11]. Wu WB, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018 May;65(3):476-483.
[12]. Mortell KH, et al. Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1138-41.
[13]. Mortell KH, et al. Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1138-41.
[14]. Mortell KH, et al. Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1138-41.
[15]. Mortell KH, et al. Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1138-41.
[16]. Glushakov AV, et al. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Mol Psychiatry. 2002;7(4):359-67.
[17]. Mortell KH, et al. Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1138-41.
[18]. Mortell KH, et al. Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1138-41.
[19]. Mortell KH, et al. Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1138-41.
[20]. Mortell KH, et al. Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1138-41.
[21]. Glushakov AV, et al. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Mol Psychiatry. 2002;7(4):359-67.
[22]. Glushakov AV, et al. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Mol Psychiatry. 2002;7(4):359-67.
[23]. Glushakov AV, et al. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Mol Psychiatry. 2002;7(4):359-67.
[24]. Glushakov AV, et al. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Mol Psychiatry. 2002;7(4):359-67.
[25]. Glushakov AV, et al. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 2003 Apr 1;72(1):116-24.
[26]. Glushakov AV, et al. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Mol Psychiatry. 2002;7(4):359-67.
[27]. Glushakov AV, et al. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Mol Psychiatry. 2002;7(4):359-67.
[28]. Glushakov AV, et al. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Mol Psychiatry. 2002;7(4):359-67.
[29]. Glushakov AV, et al. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Mol Psychiatry. 2002;7(4):359-67.
[30]. Glushakov AV, et al. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 2003 Apr 1;72(1):116-24.
[31]. Glushakov AV, et al. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 2003 Apr 1;72(1):116-24.
[32]. Glushakov AV, et al. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 2003 Apr 1;72(1):116-24.
[33]. Glushakov AV, et al. Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain. 2005 Feb;128(Pt 2):300-7.
[34]. Glushakov AV, et al. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 2003 Apr 1;72(1):116-24.
[35]. Glushakov AV, et al. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 2003 Apr 1;72(1):116-24.
[36]. Glushakov AV, et al. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 2003 Apr 1;72(1):116-24.
[37]. Glushakov AV, et al. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 2003 Apr 1;72(1):116-24.
[38]. Glushakov AV, et al. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 2003 Apr 1;72(1):116-24.
[39]. Glushakov AV, et al. Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain. 2005 Feb;128(Pt 2):300-7.
[40]. Glushakov AV, et al. Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain. 2005 Feb;128(Pt 2):300-7.
[41]. Glushakov AV, et al. Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain. 2005 Feb;128(Pt 2):300-7.
[42]. Glushakov AV, et al. Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain. 2005 Feb;128(Pt 2):300-7.
[43]. Glushakov AV, et al. Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain. 2005 Feb;128(Pt 2):300-7.
[44]. Glushakov AV, et al. Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain. 2005 Feb;128(Pt 2):300-7.
[45]. Glushakov AV, et al. Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain. 2005 Feb;128(Pt 2):300-7.
[46]. Glushakov AV, et al. Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain. 2005 Feb;128(Pt 2):300-7.